> u =
) Lﬁ!—I\:I Illil

SV 2002
Parallel Image Compositing API

Byron Alcorn & Randall Frank

HP Workstations & Lawrence Livermore National Labs

Workshop on Commodity-Based Visualization Clusters

Scalable Visualization Today

“Standard” commodity clusters
— Nodes + GPU + Interconnect
— PowerWalls
— Remote displays
Multiple goals
— Interaction/VR: High frame rates
— PowerWalls: Large pixel counts
— Data scaling: High polygon/fill rates
— Image Quality: Full scene anti-aliasing

Hardware for “compositing” has focused on:

— Application transparency
— Parallel rendering models

Compositing solutions vary considerably:
— sVv6, Sepia, SGE, Lightning2
— Many software systems

Workshop on Commodity-Based Visualization Clusters

AT

\,

~

/

—

=
Y '
*:& Cw

IS5 2002

A -
[] [] [" n \ o f:li
An ldealized Visualization Environment *

$ i
VIS 2002
Compute Storage o
I i Composition User isti
c . = e Existing
abri abric Fabric Connect Existing end user desktop
desktop nodes displays

Compositors discoverable
from rendering resource

Rendering Engines

—1 |

4 x 4 Tiled Power Wall

Compositors configurable
to one or more displays

(" Virtual Compositor

» multiple physical
compositors

* locked down to a
display

Workshop on Commodity-Based Visualization Clusters

L
<

N
Inhibitors to Compositor Adoption #ﬁs T

—

(_\\

Small market

— Few applications

— No such thing as a “standard” cluster

— No common rendering infrastructure for parallel applications
No common API for compositors

— Application transparent modes are scalability limited

— Invasive/custom interfaces to devices for “special features”
Lack of 2D integration with 3D
Much of the 3D intensive SW was developed for SMP machines
with limited graphics performance

— Scene graph management

— Preparing data for the rendering pipeline
Hardware limitations exist

— Capabilities of COTS graphics cards

— Bandwidth available for image fragments

Workshop on Commodity-Based Visualization Clusters

Paralle! | C iting API (PICA “ﬁ
arallel Image Compositing API ()

System developers and early
adopting app developers

— Mostly HP, PNNL and LLNL
employees

— Informal API discussions
Goals
— Abstraction for distributed
image composition
— Provide an open source API
adoptable by ISVs

— Provides a platform for SW
implementations

— Target major hardware
compositors

Workshop on Commodity-Based Visualization Clusters

A Scalable Rendering Software Stack

Toolkits
Chromium

PICA
OpenGL Compositor

Toolkits: “Scene Graphs”, primitive generation
— OpenRM
— VTK
— OpenSG / Open Scene Graph

Chromium: parallel OpenGL API

DMX: distributed X11 / windowing

Merlot: remote image transport interfaces
PICA: “compositor” abstraction

Workshop on Commodity-Based Visualization Clusters

Underling Assumptions

API targets parallel applications

— Simple parallel model assumptions

— Application can pass messages to itself
APl must handle various input sources

— Region of graphics card memory

— Software rendering to main memory

— Must support “windowed” applications
API| must provide a complete compositing abstraction

— Abstract the concept of composite “ordering”

— Composting functions covering common usage
Independent of graphics API

Must abstract all current compositor forms
— Multiple compositors available in the same cluster
— DVI based, network based, software, etc

Workshop on Commodity-Based Visualization Clusters

Basic PICA Abstractions

Application nodes
— Source of image fragments (ifrag), includes rendering resource
— Application running on every node
Application generates a sequence of “Frames”
— Frames are sequenced by IDs
— Limited queries Supported via frame IDs
— Multiple frame “channels” for stereo
Frames are built from multiple ifrags
— An ifrag is a rectangle of augmented (e.g. a & depth) pixels
— Individual nodes can submit multiple ifrags
— ifrags can be located anywhere in a frame
— ifrags are tagged with an “order” number within each frame
“‘OpenGL’"-style compositing pipeline
— Multiple conceptual “stages” of compositing supported
— The order of ifrag introduction can be application specified

Workshop on Commodity-Based Visualization Clusters

Compositing Operation in PICA

\ PICA API wrapper

1

1

1

1

1

1
Workstation 0

9

1
Node 0 | cgh
1
: Q
Node1 | [
1
1

v

Workstz?tion 1

L

] «Q
Node 2 : 5
Node 3 E gh

Workstation 2

TeraScale Browser

Node4 | |3
Nodes

Generate imagery

Workshop on Commodity-Based Visualization Clusters

- B
&
ifrags

Ordered image fragments

\ N
Compositor
N
S
Windowed application,
PowerWall, other devices
Context Frame
Realization of a compositor Output complete images

PICA API wrapper

“Conceptual” Compositor

1
1
1
1
1
1
Worksthtion 0 ' QS Application level abstraction, physical layers :
. s are free to implement as desired .
1
(@] > 0 1
N 1 >
ode 0 : 5 :
: | TeraScale Browser :
(@] > | 1
Node 1 E >3 ‘ — Alpha-blending + Z-buffering '
4
| 1 > Order preserving E
Workstation 1 Accepts “orders” 0-3 .
1
1
1 «Q > j J
Node 2] >4 - i
T 2]
1 (o) < i
Node3 ' |3 > I
' e Z-buffering [RE— :
: 5 e |
H 1
e 3 > Non-order preserving !
: g Accepts “order” 4 1
1 Q |y = [
Node 4 | > -]
1 - .
: Compositor Stages
1
: Each realizes a “composite” :Inputs 2 ifrags, outputs an ifrag i
- . -z _ScalelBiaso-testing ~Z-buffer~Blending -Logic Ops~Masking ||
Nodes ifrags Context Frame
Generate imagery Ordered image fragments Realization of a compositor Output complete images

10

Workshop on Commodity-Based Visualization Clusters

initialization

frame based

Basic PICA Operation

Compositing “context” negotiated (one node)
— Includes compositing pipeline definition
— Hardware is allocated

Context ID is passed to nodes by application

Context is “bound” locally (all nodes) to

realize the system X g ﬁ%ﬁr
Application starts a frame (all nodes) : ¥ e
— Application renders graphics (generates _ ;;

ifrags)
— ifrags are passed to local context
Application ends the frame (all nodes)
— Composite may occur asynchronously

Basic query functions allow for application
feedback

11

Workshop on Commodity-Based Visualization Clusters

Technical Detalls

Compositing happens at the application rate, not at the dlsplay rate

Designed to support 99% of applications
— Sorted, alpha blending (e.g. volume rendering)
— Tiling
— “Overlays” (e.g. annotations, heads-up-displays)

Advanced composites supported as well
— Anti-aliasing
— HW assisted “transparency”

Provides mechanisms for application “hinting”
— Performance optimizations (e.g. BSP composite trees)
— “Specialized” features (e.g. incomplete crossbars)

Compositing APl mostly independent of graphics API
— Some calls restricted (gIXSwapBuffer, giXCreateContext)
— Special “window manager” specific create context calls

.
R ﬁ\“;
LY
ke

Workshop on Commodity-Based Visualization Clusters

Current Status

First revision of the specification is complete
— Written as a communication tool o [
— “Human readable” specification next ﬁ _

Development efforts

— “C” Stubs written for the API

— Compiles both apps and compositor
— Tiered shared library dispatch done
— Simple software compositor under development
— Test application under development

Continued investigations/discussions
— Mapping to various hardware systems

— Application transparency issues
— Parallel system model and security issues

13

Workshop on Commodity-Based Visualization Clusters

Future Steps

Work out additional high level technical details
— Opportunities for performance optimizations
— Node allocation issues (e.g. multiple graphics pipelines in a node)
— How to choose a compositor

Work out next level of details

— Sample application
— Partial compositor

Create sample implementation
Write drivers to support a HW compositor

Get API| feedback from a wider audience
— Researchers

— Application writers

— HW providers

Workshop on Commodity-Based Visualization Clusters 14

%

) SNIS 2002

Lawrence Livermore
National Laboratory

UCRL-PRES-150111

The LLNL work was performed under the auspices of the U.S. Department of Energy by the University of California,
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Workshop on Commodity-Based Visualization Clusters

